
University of South Florida

ORB_SLAM2 integration with Robobulls Robot

 Final Report

Justin Rodney

CIS4900 Independent Study in Robotics

Professor. Alfredo Weitzenfeld

Summer 2020

Rodney 1

Index

I. Preface 2
II. Introduction 4

III. Methodology 6
A. Requirements & Installation 6
B. Running the Programs 7
1. Running camera node 7
2. Launching OrbSlam2 8
3. Running Rviz 9
4. Map Generation Using TELOP 11
5. Running Bug Algorithm 14

IV. Discussion and Results 16
VI. Conclusion 22
Works Cited
23

Rodney 2

I. Preface

The objective of this study was to configure ORB_SLAM2, a simultaneous localization

and mapping package, to work with the RoboBulls differential drive robot via ROS in order to

use the camera for localization. The map and pose published by ORB_SLAM2 could be used for

autonomous exploration of an unknown environment to generate maps, as well as autonomously

navigate to a goal in a known map. There are several pre-existing ROS packages that provide

these autonomous navigation functions, such as Exploration_lite for autonomous exploration of 1

an unknown environment and the navigation stack which can be used for path planning. 2

However, after conducting research and testing these packages, it is clear that they are not

compatible with ORB_SLAM2 because of the lack of odometry and tf(transform) information

being published. Additionally, ORB_SLAM2 is the only existing SLAM package in ROS that is

able to use only a monocular camera for its input, making it the only compatible SLAM package

for the RoboBulls robot equipped with a camera, IR distance sensors, servos, and encoders as of

2020.

With the current configuration of the robot, ORB_SLAM2 can be used for localization in

a known map as demonstrated in the bug algorithm demo program. Map generation with

ORB_SLAM2 was tested in four different rooms, with only one of the rooms being able to

produce a map accurate enough for localization throughout the entirety of the map. As found in a

previous study by Yu-Ting Chung, that is uploaded to the biorobaw github, points cannot be

1 http://wiki.ros.org/explore_lite
2 http://wiki.ros.org/navigation

Rodney 3

generated on objects in an image frame if they are too dark or too bright . This leads to 3

difficulties mapping the environment, as a white wall or black footstool would not be captured in

the map and this would lead to the robot being lost when facing these objects, resulting in an

unusable map. The robot must avoid obstacles using its distance sensors, as the performance of

localization and quality of the maps that are generated are currently only accurate enough to

provide the robot with its current location and does not provide information regarding its

distance to obstacles for path planning. In order to utilize the more advanced SLAM packages,

the robot would need to be updated as they require IMUs, stereo cameras, or laser scanners.

Upgrading the robot would provide a more accurate and reliable mapping and localization, as

well as the ability to use features like RGBD processing or the ability to use the pre-existing

ROS packages used for autonomous navigation via path planning in a known map(navigation

stack) and exploration in an unknown environment while generating a map(exploration_lite).

3 https://github.com/biorobaw/SLAM-S2018/blob/master/docs/Reports/final%20report.pdf

https://github.com/biorobaw/SLAM-S2018/blob/master/docs/Reports/final%20report.pdf

Rodney 4

II. Introduction

ORB_SLAM2 is a simultaneous localization and mapping package that uses a monocular,

stereo, or RGBD(RGB with depth) camera for its input. The ROS implementation of the program

outputs Pose, PointCloud2, and a debug image to ROS. The Pose contains the x, y, and z

coordinates as well as quaternion information which can be used to calculate the yaw that the

camera, or for the use of the project the robot, is located in the environment. Using

ORB_SLAM2 with Stereo or RGBD cameras provide a map of “true scale”, however, using a

mono camera does not provide a map that is true to scale . 4

Rviz is a visualization tool for displaying commonly used ROS messages such as Pose,

PointCloud2, map, and Image. This can be used for displaying the Pose of robot, the

PointCloud2 points, and debug Image that is sent from ORB_SLAM2

Telop allows you to manually control the robot by sending Twist messages over ROS.

This can be used for controlling the robot when generating maps for ORB_SLAM2.

pi3_slam_nav.py is a program that uses Pose information sent from ORB_SLAM2,

allows input coordinates to be input as a goal, and moves the robot to the goal using a bug

algorithm. The program uses the x, y, and yaw information as well as the x and y coordinates of

the goal to calculate the required yaw for the robot to be facing the goal.

Desired angle = atan2(goalY- currentY, goalX-currentX)

4 http://wiki.ros.org/orb_slam2_ros

http://wiki.ros.org/orb_slam2_ros

Rodney 5

Distance = (goalX-currentX)^2 + (goalY-currentY)^2

The program will then adjust the robot’s angle until it is facing the goal, travel towards

the goal and use wall following to avoid any obstacles along the way.

Figure 1. Diagram of the software system

Rodney 6

III. Methodology

A. Requirements & Installation

The utilization of ORB_SLAM2 with the robot requires the corresponding github

branches to be installed and set-up on both the robot and your computer. If you have not done so,

you will need to follow the installation documentation, see footnote below. 5

This package includes the libraries required for controlling the robot by sending speed

messages, reading from its distance sensors for obstacle avoidance, receiving encoder

information to retrieve the distance traveled by the robot, and obtaining the video feed from the

camera. The launch files for starting ORB_SLAM2 as well as the bug algorithm program that

utilizes the pose information are also included.

Additionally you will need to install:
ORB_SLAM2(ROS):https://github.com/appliedAI-Initiative/orb_slam_2_ros (you only
need to install, you do not need to configure anything)

ORB_SLAM2 is a simultaneous localization and Mapping algorithm that uses input from
monocular, stereo, and RGBD cameras, and publishes Pose, PointCloud2, and debug
Image topics . 6

Rviz:http://wiki.ros.org/rviz 7

Rviz is a visualization tool for displaying commonly used ROS messages such as Pose,
PointCloud2, map, and Image.

Recommended:

Telop(highly recommended): http://wiki.ros.org/teleop_twist_keyboard 8

Telop allows you to manually control the robot by sending Twist messages over ROS. 9

5https://github.com/biorobaw/pi3_robot_2019/blob/python_client/docs/Control%20of%20Mobile%20Robots%20Ins
tallation%20Doc.pdf
6 http://wiki.ros.org/orb_slam2_ros
7 Included in the full installation of ROS-Kinetic
8 Included in the full installation of ROS Kinetic
9 http://wiki.ros.org/geometry_msgs

https://github.com/biorobaw/pi3_robot_2019/blob/python_client/docs/Control%20of%20Mobile%20Robots%20Installation%20Doc.pdf
https://github.com/biorobaw/pi3_robot_2019/blob/python_client/docs/Control%20of%20Mobile%20Robots%20Installation%20Doc.pdf
http://wiki.ros.org/orb_slam2_ros
http://wiki.ros.org/geometry_msgs

Rodney 7

B. Running the Programs

Step 1. Running camera node

An initial set up of ROS to allow communication between your computer and the robot as

detailed in the documentation for installing the robot_client and ros_controller is necessary as

well. In addition to running the primary launch file on the robot, you will want to run an instance

of raspicam(included in ros_kinetic) in a separate terminal. In my testing, I had run into issues

where the camera had to be restarted in order for ORB_SLAM2 to receive the images for

processing. The settings I had most success with were:

rosrun raspicam_node raspicam_node _width:=640 _height:=480 _framerate:=30
_quality:=100 _ISO:=200 _shutter_speed:=100000 _saturation:=50 _awb_mode:=horizon
__name:=cam _enable_raw:=true _hFlip:=true _vFlip:=true

These are the parameters that I had found and modified from Pablo Scleidorovich’s

main_controller.py program in the ros_controller branch on the biorobaw github . 10

The camera appears to be mounted upside-down on my robot, so I had to flip the image.

However, if yours is properly oriented you may set the hFlip and vFlip parameters to false.

Additionally, the 640x480 resolution worked best for me, however, you may wish to

experiment with 320x240 or 1280x960. Higher resolution images seem to work better with

ORB_SLAM2 for generating the points in a map, but may slow down the rate of camera frames

being received through the network, hindering the robot’s ability to maintain localization while

moving, as the time between two image frames are too significant. Whereas, lower resolutions

have smoother frame rate, but seems to take more time and generate less accurate maps.

10 https://github.com/biorobaw/pi3_robot_2019/blob/ros_controller/scripts/main_controller.py

https://github.com/biorobaw/pi3_robot_2019/blob/ros_controller/scripts/main_controller.py

Rodney 8

Step 2. Launching ORB_SLAM2

In the robot_client/launch folder, there exists two launch files:

pi3_orb_slam2.launch

pi3_orb_slam2_localization_only.launch

These launch files will launch ORB_SLAM2 with the settings configured to work with
the robot. You would run it with the command:

roslaunch robot_client pi3_orb_slam2.launch

Recommended: The camera should be calibrated as detailed here. 11

After running the calibration program you can update the camera calibration parameters
in the launch files:

<!-- Camera calibration parameters -->

 <!--If the node should wait for a camera_info topic to take the camera calibration data-->
 <param name="load_calibration_from_cam" type="bool" value="false" />
 <!-- Camera calibration and distortion parameters (OpenCV) -->
 <param name="camera_fx" type="double" value="583.01740710559432" />
 <param name="camera_fy" type="double" value="583.01740710559432" />
 <param name="camera_cx" type="double" value="320" />
 <param name="camera_cy" type="double" value="240" />
 <!-- Camera calibration and distortion parameters (OpenCV) -->
 <param name="camera_k1" type="double" value="0.20483552665926258" />
 <param name="camera_k2" type="double" value="-0.42414204428032326" />
 <param name="camera_p1" type="double" value="0.0" />
 <param name="camera_p2" type="double" value="0.0" />
 <param name="camera_k3" type="double" value=".0095177708663656737" />

If the RoboBulls robot you have is equipped with the same camera as used in this paper,

you may not need to update the parameters. However, if you are having problems with

ORB_SLAM2 you may need to update these parameters.

11 https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html

https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html

Rodney 9

Step 3. Running Rviz
In order to view the map generated by ORB_SLAM2 and the robot’s position in the map,

you will need to run rviz:

rosrun rviz rviz

Figure 2. Rviz fully configured and showing a map of a bedroom

You will want to add the debug_image(Image), map_points(PointCloud2), and pose(Pose)

topics that are located in /orb_slam2_mono.

Rodney 10

Figure 3. Setting Rviz parameters

The debug_image topic allows you to view ORB_SLAM2 generating points from the

image frames as well as whether the robot is currently localized or lost.

The map_points topic shows you the map points in a three dimensional space, with pose

showing the location of the robot. Rviz generates a model to represent the robot using the robot’s

pose in the environment. I recommend that you set the Shaft Length of the pose display to 0 for

a more accurate visual representation of the robot in the environment, as the robot does not have

a significant body length that needs to be represented by the model.

Rodney 11

Figure 4. Rviz pose parameters

You can move the camera around by clicking and scrolling on the 3D environment, while

holding shift will allow you to change the point the camera is centered around. You may save

these settings in Rviz so that you do not need to reapply the changes upon start up.

Step 4. Map generation using telop

Now that you have ORB_SLAM2 generating a map from the video, the next step is

generating the map. In order to do this, you will want to manually control the robot using telop.

rosrun teleop_twist_keyboard teleop_twist_keyboard.py
cmd_vel:=/pi3_robot_2019/r1/speed_vw

Depending on the complexity of the environment the robot is in, generating a map will

take a varied amount of time and may involve different methods of navigating within it. For

instance, generating points when the robot is facing a white wall will not work very well, and

will require you to position the robot in a way that there are some distinguishable features in the

captured image so that points can be generated. On the other hand, a cluttered room with colorful

tapestry may generate a lot of points that are not accurately located. Keep in mind that this will

Rodney 12

play a part in localization as well, as if the robot is not able to recognize points, it will not know

where it is located.

In order to test the system, I conducted tests in four different environments; a kitchen,

two living areas, and a bedroom. I used methods of wall-following during map generation,

having the robot rotate in the middle of the room during map generation, and manually

navigating the robot throughout the environment.

The methodology I used for manually navigating the robot in the environment while

creating maps is as followed; positioning the robot in one corner or side of the room. You will

want to place the robot (camera) facing the corner and navigate the robot in reverse, away from

the corner, until ORB_SLAM2 picks up enough unique points to start initializing the map. Then

you will want to start a process of moving the robot forwards and backwards the full length of

the room, while slowly adjusting the angle of the robot, until the robot fully turns and captures

360 degrees. During this process, the robot will likely lose its location, so you will need to

reposition the robot towards objects that it has already seen. After traveling a full circle, if the

generated map appears to be mostly accurate, you will want to then manually navigate the robot

throughout the environment, mapping all of the objects individually, to ensure that the finer

details of the map are captured. You should test that the map is complete by navigating

throughout the entirety of the map and ensuring that the robot stays localized. If the robot loses

localization, you should repeat the motion as detailed above until the robot can stay localized at

that point.

Rodney 13

Figure 5. Diagram showing the motion of the mapping methodology

Additionally, maps can be saved using:

rosservice call /orb_slam2_mono/save_map <name>.bin

Maps can be opened for localization only(where the map is no longer being built and
only used for localization) or a map can continue being built. Modify
pi3_orb_slam2_localization_only.launch to contain the name of the map you wish to save.

 <!-- static parameters -->

Rodney 14

 <param name="load_map" type="bool" value="true" />

 <param name="map_file" type="string" value="<name>.bin" />
//enter the name of the map file

Additionally if you want to continue building a map, modify the same parameters in the
pi3_orb_slam2.launch file

<!-- static parameters -->

 <param name="load_map" type="bool" value="false" /> //set this to
true

 <param name="map_file" type="string" value="<name>.bin" />

Step 5. Running bug algorithm

Once you have created a map that is detailed enough that the robot can maintain

localization throughout the entirety of the environment, you can now run the bug algorithm

rosrun robot_client pi3_slam_nav.py

The GUI will display the robot’s position (x, y, theta) in the map, and allow you to enter

the (x, y) coordinates of the goal position. You will want to use Rviz to view the map and

determine your goal point because, as aforementioned, the coordinates of the Pose from

ORB_SLAM2 are not to true scale, and are not represented by inches or meters. ORB_SLAM2

appears to approximate the depth of the image differently each time the map is initialized, so

there does not seem to be a way to convert these coordinates to a unit of measurement.

Rodney 15

Figure 6. pi3_slam_nav.py GUI

Rodney 16

IV. Discussion and Results

One factor that hinders this from being a viable option for localization is the performance

of the camera over ROS. As aforementioned, using a higher resolution for the images provides

lower FPS, making it difficult for ORB_SLAM2 to maintain localization. Unfortunately,

ORB_SLAM2 does not work with compressed image topics. The bottleneck for the performance

appears to be on either the CPU or Wifi card of the robot, as I have tried running ROSCORE on

both robot, and my client computer with the same results, with my computer’s CPU and Wifi

card running significantly under max load. The system was additionally tested under 3 different

wifi networks with the same results as well.

Because of these issues, autonomous exploration for mapping does not seem feasible and

did not work with tests using wall following or moving the robot in a circle. Depending on the

complexity of the frame, the time it takes to generate points widely differs. Therefore, according

to my research, it is best to manually navigate the robot using telop to map the environment.

During manual map generation there are still significant issues while generating a map,

such as the inability to generate points on objects that are too dark or light. This issue was also

documented by Yu-Ting Chung who was working on integrating ORB_SLAM2 onto a raspberry

pi with a camera . This results in parts of the environment not being mapped, and leaving holes 12

in the PointCloud2 map, which in turn leads to sections of the environment that the robot cannot

maintain localization in. I tested the map generation in a kitchen, two living areas, and a

bedroom, and only the map generated in the bedroom was usable.

12 https://github.com/biorobaw/SLAM-S2018/blob/master/docs/Reports/final%20report.pdf

https://github.com/biorobaw/SLAM-S2018/blob/master/docs/Reports/final%20report.pdf

Rodney 17

Figure 7. Living area #1

One of the living areas had white walls which would not be mapped by the environment

Figure 8. Kitchen

The kitchen, in addition to the black cupboards which would not generate points, had
many reflective surfaces which either would not get picked up, or would generate points in
incorrect locations related to their physical location in the environment.

Rodney 18

 Figure 9. Living area #2

The other living area had a black footstool which would not be picked up, in addition to a
colorful carpet that also generated points in the environment that did not correspond to any
physical counterpart.

Figure 10. Bedroom

Rodney 19

The last environment, which ORB_SLAM2 was capable of generating a usable map in, was a
bedroom that had enough unique objects in the environment to generate the points needed to
allow the robot to maintain localization.

Another issue from map generation is that mapping finer details of an environment before

capturing the entire environment through a panoramic view would result in the corners of the

map not meeting. For example, if the robot was inside of a circle with a red door, instead of

capturing the full 360 degrees of the environment, the map would have a portion of the map left

blank with the rest of the environment skewed.

Figure 11. Diagram of skewed map

Rodney 20

Throughout the research and development of this project, I had discovered a plethora of

existing ROS packages used for autonomous navigation and path planning such as

Exploration_lite and Frontier_exploration that used the navigation 13 14

stack(http://wiki.ros.org/navigation). However, through further research or trying to run these

programs, I ran into the common issue that the robot did not have sensors that met the

requirements of these packages. The navigation stack specifically requires a tf(transform)

linking the map, odometry, and base_link coordinate frames together, however, ORB_SLAM2

only publishes the link tf for the map and the camera_link. Throughout researching ways to

insert the odom information into the already existing map->camera_link tf tree, there was a lack

of resources detailing this process. There were a handful of discussions in the ROS community

where users urged others in this predicament to simply use another SLAM package that does

provide the proper tf information, such as rtabmapping and gmapping, as this would be more

trouble than it is worth and likely yield inaccurate results . However, these packages require 15

Laser Scanners or RGB-D cameras.

Testing ORB_SLAM2 and researching navigation stack and SLAM alternatives has

suggested that using a single mono-camera, which ORB_SLAM2 also does not support RGB

processing for, does not provide high quality results for complex usage. Mapping can take an

upwards of an hour to generate a map in a 11.5’x13’ bedroom in certain instances, and in other

environments a complete map will not be able to generate at all. Once an accurate map is

correctly generated, the coordinate frame of the map does not correspond to actual units of

13 http://wiki.ros.org/explore_lite
14 http://wiki.ros.org/frontier_exploration
15 https://answers.ros.org/question/351167/transformation-between-odom-and-camera_link/

http://wiki.ros.org/explore_lite
https://answers.ros.org/question/351167/transformation-between-odom-and-camera_link/

Rodney 21

measurement, so the encoders cannot be used to approximate the location of the robot in the

event that the robot loses its track.

Once the map is generated, a package called Octomap, a ROS package that can generate

occupancy grids from LaserScanner or PointCloud2 topics, can be used to generate an

occupancy grid . However, due to inaccuracies of the pointmap generated by ORB_SLAM2, 16

Octomap gets several false negatives where cells are marked as occupied even when there are no

physical obstacles in the location. An example of this would be points generated from a colored

carpet which would not obstruct the robot’s movement, but is picked up by ORB_SLAM2 and

marked as an obstruction by Octomap. Perhaps it is possible to tweak the launch files to reject

obstacles unless it is between certain z coordinates(height), this could be resolved, however,

currently the occupancy grids generated are not accurate enough for path planning. Additionally,

in my experience, running Octomap simultaneously significantly decreases performance. I

believe there is a bottleneck in the robot’s networking speed, because the amount of image

frames sent by the camera drops, decreasing the reaction time for the localization.

16 http://wiki.ros.org/octomap

http://wiki.ros.org/octomap

Rodney 22

V. Conclusion

While ORB_SLAM2 can provide us with pose information inside of its depth

approximated coordinate frame that can be used for bug algorithms and other simple

applications, using ORB_SLAM2 as the primary form of localization has several limitations.

The performance of ORB_SLAM2 on the robot appears to be bottlenecked by the robot’s

wifi transfer rates, as transmitting images at ideal resolutions results in low frame rates, making

localization inaccurate. While increasing this transfer rate, perhaps by getting a faster wifi card,

may be a solution, I believe that better results would be achieved by acquiring additional sensors

such as an IMU or laser scanner. Having these sensors would allow us to generate better maps

and have more accurate localization, as well as broaden the compatibility with ROS packages

used for autonomous navigation, which I believe would provide a system with a more practical

use.

Rodney 23

Works Cited

Camera Calibration. (n.d.). Retrieved July 26, 2020, from
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.h
tml

Chung, Y. (2018, July 18). Final Report. Retrieved July 30, 2020, from
https://github.com/biorobaw/SLAM-S2018/blob/master/docs/Reports/final%20report.pdf

Gmapping. (n.d.). Retrieved July 26, 2020, from http://wiki.ros.org/geometry_msgs

Gmapping. (n.d.). Retrieved July 26, 2020, from http://wiki.ros.org/gmapping

Navigation. (n.d.). Retrieved July 26, 2020, from http://wiki.ros.org/navigation

Octomap. (n.d.). Retrieved July 26, 2020, from http://wiki.ros.org/octomap

Orb_slam2_ros. (n.d.). Retrieved July 26, 2020, from http://wiki.ros.org/orb_slam2_ros

Rtabmap_ros. (n.d.). Retrieved July 26, 2020, from http://wiki.ros.org/rtabmap_ros

http://wiki.ros.org/gmapping

